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ABSTRACT IT. Preliminaries l g

Design of detectors for ¢-mixing signals in
¢-mixing noise is considered, where a large degree
of dependency may also occur between the signal and
noise. Applying the criterion of asymptotic rela-
tive efficiency, it is shown that this design re-
duces to the solution of an integral equation in
which knowledge of only the second-order statistics
of the random processes involved is required. From
this is may be seen that if the signal 1s indepen-
dent of the noise and has nonzero mean, the optimal
detector 1s the same as in the constant known sig-
nal case.

1. Introduction

A longstanding area of both practical and the-
oretical importance has been the detection of sig-
nals in corrupting noise. Because of modern high
speed sampling, the presence of a dependent noise
process is to be anticipated. Neyman-Pearson opti-
mal techniques [1] are tractable only in cases
where the appropriate multivariate distributions
are known. Since in non-Gaussian situations these
distributions are often not known, it has frequent-
ly been found fruitful to adopt an alternative fi-
delity criterion, commonly the asymptotic relative
efficiency (ARE) criterion, which is especially
appropriate in the weak signal situation. Because
continuous time detection is often intractable in
the non-Gaussian case, current efforts are directed
toward discrete time detection. Results in this
area have been obtained recently by Poor and Thomas
{2,3] for the case of memoryless detection of a
known constant signal in additive m-dependent noise;
we have shown [4,5] how these results may be c¢x-
tended to a large class of ¢-mixing noises, thus
allowing the employment of noise models which more
accurately reflect physical reality. The latter
results guarantee performance (as measured by the
ARE criterion) at least as good as that of the opt-
imal detector [2,3] designed under the assumption
of m-dependent noise (which may be taken to include
"white noise" as a special case). !

The class of processes used to model the noise
in the above work may be seen to be quite general;
however, the assumption of a constant known signal
is in many cases overly restrictive. Instead of
such an assumption, we might wish to model the sig-
nal as a random process. To set the problem in its
greatest generality, we should allow dependency be-
tween signal samples (and thus employ ¢-mixing
models tor both signal and noise), and we should
also allow some degree of dependency between signal
and noise. We are thus led to the problem of the
design of the optimal detector in this general
random sfgnal situation.
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Let (Xi;i=1,2,...} be a strictly stationary se-

quence of random variables. For asb, define M(a,b)=
c{Xa,Xa+1,...,Xb}, the o-algebra generated by the

indicated random variables, where a and b may take
on extended real values. Then {Xi;1=l,2,...} is

symmetrically ¢-mixing if there exists a nonnegative
sequence @.:i=1,2,...5 with ¢i + 0 such that for
i

¢ M(1,k) and

each k, l<k<w, and ror each 121, E1
E26 M(k+i,*) together imply

|P(1~Zlf\E2) - P(El) 1’(1-",2)| < ¢, min [P(E,), P(E)} .

We will consider detection of a symmetrically
$171,2,0..0, where 0<E{[si]2}<m, in
additive symmetrically ¢-mixing noise {Ni;i=1,2....},

¢,_

mixing signal (S

where we observe realizations (yi;i=l,2....,n} of

the process {Yi;i=1,2,...,n}. Tn order to apply the

ARE fidelity criterion, this will amount to a choice
between the two hypotheses

0 i i i=1,2,...,n

=N, +0S. ; i=1,2,...,n
i i

where 6 is a parameter which will be allowed to ap-
proach zero at the proper rate, thus vielding the
asymptotic limit. Throughout the discussion we will
assume that both the noise and signal processes
possess (possibly different) ¢-representatives which

satisfy
S
i=1

Any such symmetrically ¢ -nixing process will be
called acceptable. For convenience we assume the
existence of densities f , (+,¢) of N, and N \

k k+]
f(+) of Nl' f(

+,¢) of Nk and Sk , where the latter
is assumed to be independent of k. We also assume

Y > [, )+ (v, ) MTGITE)

i 3

is square integrable for all n, and that f(+) is
strictly positive on the real line. We assume in
addition that
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— £(xy) dy /T

and
f.v ;; f(x,y) dv / /FGO

are squarc integrable (all integrals, unless indi-
cated otherwise, are taken over the entire real
line). Note that if the signal and noise are in-
dependent, the latter condition is equivalent to
the assumption of finite Fisher's information
number contained in [2,3] and [4,5]. We also
assume that

lim ‘/}(x-ey,v) dy = f(x).
0-0

As in [2,3] and [4,5], we will optimize over the
class of optimal memoryless detectors designed
under a "white noise" assumption, i.e. where a

n

test statistic Tg(y) = Z g(yi) is compared to
i=1

a threshold.

prime concern.
We will restrict the class % of nonlinearities

g to include those measurable real valued functions

for which we can find 01>0 such that the random

variable g(N1 + esl) is second-order for all 6 ¢

Specifying g will therefore be of

[0,61], and such that the following mild regularity
conditions hold, where EO(-) denotes expectation
computed under Hl with parameter 0(by proper choice

of the threshold, we assume without loss of gener-
ality that the random variables g(N.) are zero

mean) : b
(a) .!;(x)f'(x)dx #0

if the signal and noise processes are independent

. 2
4
() lim [SS'Es{Tg(Y)}|o=0] 4he) >0
T arg | [Tg(Y)IZ}

if J]}g(x) %;

(®d"H

f(x,y) dxdy # C , or

2
32 .
[;;3 Ee(1g(v)}[q=0 \
lim 5 =n(g) >0
ne kg { (r,(01°%

if ffyg(x) ;x f(x,y) dxdv = 0

3
(c) —= < T E{g(N1+eS]))|()=k1//rT

a <
- E(g(N1+9sl)}|n=o

for some constant k1 >0

i ffyg(x) - f(x,y) dxdy # 0, or

2
(e') -« < 1im 9«—2 E{g(Nl-H-)Sl))' =

v
nee 30 p=k, /n"
2

2

52
7 E(g(N1+OSI)}Ie_O < w

for some constant k2 = 0

it j]}u(x) L fxy) dxdy = 0

)

@ |55 [g(N1+asl)]2} o<

@ % [feto rixeoyy) any oo

.[fgg'g(x) f (x-0y,y) l@:g dxdy
if .[l;g(x) %; f(x,y) dxdy # 0, or

2
(e") 2;5'.[[é(x) f(x-6y,y) dxdy

12
”‘7 #(x) £(x-8y,v)
20

if J:ryg(x) %; f(x,y) dxdy = 0

(£) noz(g) g F,(g(Nl)ZH-Z z E{g(Nl)g(N +1)1 > 0.
i1 i

The restrictions on the densities fj(-,-),

f(-), and £(-,-) and the class % are what might be
expected when compared to those of (2,31 and [4,5)
for the constant known signal case. Propertics (a)-
(c') are assumptions conventionally imposed for
application of the Pitman-Noether theorem [6],
whereas (d)~(e') are exceedinglv mild restrictions.
For a large class of processes, including all of the
examples of [3), property (f) is satisfied and may
therefore be ignored.

T11. Development

The tractabilitv of the ARF approach is de-
rived chiefly from an appeal to central limit
theorem results, which in our case arise out of the
imposition of a mixing condition on the dependency
structure. The following lemma, for the case of
independent signal and noise, is the first step to-~
ward obtaining the appropriate mixing condition
under Hl:

Lemma 1: If (Ni;i=l.2,...) and {Si:i=1,?,...? are

acceptable and independent processes, then the

process Nl’sl’NZ'Sz"" is acceptable.
: > € S e WS
Proof: lot El o{Nl.sl, 'Nk k) and
AL ) )
E, € G{Nk+1'sk+1""] = 4. In a manner similar to

that of [7], we conclude from [8,p.37] that (for
fixed 1,k) E { E(IEZ' el o} = E{IE’l AR

oiN

3 4 k+i’sk+i"' . and hence

where @ "Nk+1‘sk+j}

o § > 1} Is a martingale. It follows

(e (TEZ' ﬂj),dj




trom [8,p.332] that E{I id } o+ E! lat =1 wpl.
L ) E2

[c t{} £ 1, it follows from the

IE
Since b{IL(I
martingale convergence theorem [8, p.319] due to

Doob that P(I [3,} » 1, in L (u), whereu is the

2 j h2 1

measure induced by Nk+i’sk+i""'
follows from [8, p.603] that there exist measurable
hj: R 2(j-i+l1)

h (N

Therefore, it

-+ R satisfying

"’Nk+j’sk+j) = E{IE2 ﬁj}.

that Ihj[ < 1 for all values of the argument, and
hj(N ) > IE2 in Ll(u). It
also follows from [8, p.603] that there exist mea-
-+ R such that w(Nl,Sl,...,Nk,Sk) =

IE . We will now introduce some notation which
1
will simplify the development of the proof (in the

following i and k are fixed):

K+’ k+1 Note also

k+l’Sk+i""’Nk+j’sk+j

surable w: R 2k

A
hj B hj(Nk+i’sk+i""’Nk+j’sk+j)
w = w(xl,yl,---.xk.yk)
b, 2n )

Xt Vi

.

3 e Y

dFN = dFN(xl,...,xk)
where FN(---) is the distribution function of

NpoeoN,

dFN(j) = dF (x

N, Bt Xy

where F (-~
N,j
N,

k+i""’Nk+j’

») is the distribution function of

dFg = dFS(yl,...,yk)

where FS(---) is the distribution function of

Spree oSy
dFg(J) = dFg s Opepgse e Ypay)
where FS j(---) is the distribution function of
’
Sk+i""’sk+j’

dFN(k,j) = dFN,k,j(xl"'"xk’xk+i""’xk+j)

where F (+++) is the distribution function of

N,k, 3
Npses NNy e N

dFg(k,§) = dF

S,k,j(yl'".’yk’yk'f‘i,“"yk*'j)

where FS K J(--') is the distribution function of
’ ’
sl....,sk,sk+i,...,sk+j,
dFN,S (xl,yl,...,xk,yk)

where FN S(---) is the distribution function of
.

"Nk'sk'

"1'51"'

dPN,S(J) = d*N,s,j(“k+i'yk+i""'“k+i'yk+j)
where FN s J.(“-) is the distribution function of
»S,
T T

dFN’S(k,i) =

dF (x

N,5,k, ] )

Y oo M Vit Rk ke

where FN s k,j(.
N,,S

1’71 Nk Sk Nk+1 k+i’

*) is the distribution function of
"'Nk+j’sk+j
We then have, fore> 0 and large j,

lP(Elf\Ez)-E(IEIhjll

1)
P-ess sup |IE1] . E(IIE -hjl} < g
and
]P(EI)P(EZ)-E(IEI}E{hj)I <
(2)
P-ess sup IIEII . E(|IE2-hj!} <€
Now
I.h} - k{1 } Efh } =
Eyd Ey B

f&' hj dFN,S(k’j) - deFN'S jhdeN's(j) =

ffw h dFN(k.j)dFS(k.j) -
Jt,ill{w h,d¥ dFN(j)dFS aF (3

because of the independence of signal and noise; and
thus

|E{1F h) - eI

} E{h V|
14 1 ]

3
N - - -~ - - . [
| fi 1K hydFy (o) JEE® hdF () Vg (k, 9) |

| ff dFthj dF (3)dF (K, 1)
—ffffw i;deN dF (1)dFg dF () |

Now [9, p.170]) implies that the first summand on the
right hand side of (3) can be upper bounded by

J2o BUlwOLy LNy D

(P-ess sup |h |)qu(k.j)

s )}

< Zo E(w(N ql""'Nk"k

= 2¢1P(E1) where (01:1=1,2,
for (Ni;i-l.Z,...) .
that the second summand on the right hand side of (3)

.} is a ¢-representation

In a similar manner, we find




4
1

ERCR i o i I

be upper b ded by 2 2 5 5
can pp ounded by wi L{w(Nl,sl,...,Nk,bk)}
= Zwi P(El). where (wi;i=l,2,...) is a ¢-represen-
tation for {Si;1=1'2""’} . These bounds thus
i - 3 2
imply |E{ [Elhj) E(IEI}L{th <20+ PE
and hence it follows from (1) and (2), by allowing
j > =, that

N —-p (1 9

[p(E NEY PEEDP(E) | s 200, +y,) P(E) .
An analogous argument in conjunction with a
straightforward modification of [9, p. 170]

/r

(where @ils replaces ®n1 ) vields

|p(glnaz) -p(sl)p(nz)| <200, + WP .

Therefore, we conclude that NI’SI’NZ’SZ""' is

symmetrically ¢-mixing with $-representation

(2¢0, + wi);i=1,2,...), and {s therefore acceptable.

QED

In the case where there exists dependency be-
tween the signal and noise the situation is more
involved. For many cases of engineering interest,
where the noise is dependent on a finite "window"
of the signal, such as the signal-dependent noise
induced through reverberation effects, we can ob-
tain the desired result. The extension of Lemma 1
to this signal-dependent noise case is given by the
following:

Lemma 2: Suppose {Si;i=l,2,...) is acceptable, and
for a fixed nonnegative integer m, Ni=C(Xi,Zi) for
i=1,2,... where X

is afs - } measurable,
i-m

i "’Si+m
G: RZ + R is measurable, and fZi:i=l,2....} is

accetable and independent of {Si;i=1,2,...} (we let
S 4 S, for i <m). Then N_,S

i-m 1 1
ceptable.

l’N2’SZ"" is ac-

Proof: We infer from Lemma 1 that Zl’sl’ZZ’SZ""
is acceptable. There exist [8, p.603] measurable
functions 9 with Xi=qi(bi—m""‘si+m)' where S1

appears only once if i <m. For each integer 1> 2m,
4m+2

define .4 :R > R by G seeeax, o) =
Ola 141y /2 %2 %40+ Xamg) X opey | LE 1 L8 0dd
x2m+1 1if 1 is even

Definc a process (Ui;1=1,2,...} by

Z(1+1)/2 if 1 {s odd

Si/Z if 1 is even

Note that {Ui;i=1,2,...} is just 21,31,22,52,...

and is, therefor§§ acceptable, We then define,
for i > 2m, Vi - '1(U1—2m""’ut+2m+l)' 1f 1<ig<2m,

i+2m+1 > R by

define .};:R

N

CICERRRL PO I

G : :
[q(i+l)/2(x2’x4"'"xi+2m+1)‘xi] it 1 is odd

xi if i is even
and let-V, = .7(U N
nd Tet V= AU U o)
We thus obtain, for i=1,2,...

N(i+1)/2 if 1 is odd

bi/Z if i is ¢ven

hence Nl,Sl.Nz.Sz.... arises via the time varying
finite memory transformation -{ on the acceptable

process {U, ;i=1,2,...} . The desired result thus

i
follows from a straightforward modification of the
proof of Proposition 7 of [5].

QED

We now are in a position to obtain a significant
result pertinent to the detection context:

2p+2

Theorem 1: Suppose {J{:R » R;i=1,2,...} is a

family of measurable functions where p is a fixed
nonnegative integer. Then under the hypothesis of
Lemma 1 or Lemma 2, we have that (-@(Ni,si,...,
Ni+p,si+p);1=1,2,...} is acceptable.

Proof: This follows as a consequence of Lemma 2 and
a straightforward modification of Proposition 7 of

- [5]

QED

A result of interest now follows as a direct
corollary:

Corollary: Under the hvpothesis of Lemma 1 and

Lemma 2, (Yi:i=1,2,...‘ is symmetrically ¢-mixing

under Hl, with é-representation independent of ¢ and
= §F =2(+ + i= fa e

given by &1 1, L) 2('i-1 wi—l) for i=1,2,3,

under the hypothesis of Lemma 1, and

= = = = = ] . 3
017007 =™ 1820 g Y V-2 for

i=4m+3,4m+4, ... under the hypothesis of lemma 2,
where (Oi}i’{wi)i‘{"i}i are associated with {Ni‘i

(under the hypothesis of Lemma 1), {Si)i, and
(Zi}i’ respectively.
Proof: This follows from Theorem 1, the proofs of

Lemma 1 and Lemma 2, and a straightforward modifi-
cation of the proof of Proposition 7 of [5]).

QED

We now can obtain the result which will allow
employment of the Pitman-Noether Theorem [6].

Theorem 2: Suppose “n ¢ R with On + 0, and g ¢ §.

= I& under H
/n

Let 'I‘“’0 1 with parameter On, where

the noise and signal processes satisfy the hypoth-

ey



esis of Lemma 1 or Lemma 2. Then GS (g) converges
2 A 2 2
absolutel s E - E{T > 4
absolutely, o E ((Tn,e h(1n'g}) borog (8),
T - E{T }
and ,8 . i}
n _E_E______E;- > N(0,1)
n,e

Proof: Note that (Ni;i=l,2,...) is acceptable

under the hypothesis of Lemma 1 and Lemma 2, the
latter following as a result of Theorem 1. It

therefore follows from [9, p.184] that US (g) con-
verges absolutely. Letting TgO denote T under HO,
and applying Proposition 7 of [5] to {g(Ni);i=l,2,

.}, we conclude from the proof of Theorem 20.1
in {9, pp.184-190] that Tgé/n is uniformly inte~-

grable, and hence it follows from [9, pp.33,184]
and assumption (f) that
E{T (2)}
—;L— + 1, (4)
no, (8)

Furthermore, from [9, p.170] and Theorem 1 we con-
clude

2%
E{(T - BT o) - Tgo//ﬁ) 1<

,6

@ 3 8% [etean + o sp-san ¥+
i=1

]E{E(Nl + OHSI)}U,where 1;1 6:5 < w

Using a technique similar to that employed in [10]
(or a result given in [11]), we conclude from
assumptions (c) - (c¢') and (d) that

E{ (T -E{T
n,g n

. 2
’e) - 1g0//r7) Yoo, (5)

which when combined with (4) yields anz > og(g).

s

The final result follows from (5) and [9, pp.25,184].

QED
We can now obtain the main result:

Theorem 3: Suppose that the hypothesis of Lemma 1
or Lemma 2 is satisfied, and g ¢ 9. Then g is opti-
mal (in the sense of the ARE) if and only if g sat-
isfies (up to a scale factor)

) X [£,(x,9) + £407,00) gy + £'(x0)=

i1 .
-f(x)g(x)
if {Ni};;l and (Si};;l are independent and E{Sl}# 0,
or
(8) f: [fj(x,y) + fj(y.x)] g(y)dy + f"(x) =

j=1
-f(x)g(x)
if (Ni;l-l,z,...) and (81-1-1,2,...) are indepen-

dent and E(Sl) = 0, where fj(—,-) is the joint

S A T T W 5,

density of N1 and Nj+1’ and f is the univariate
density of Nl’ or

(C)jgl f{fj(x,_v) + fj(y,X)] g(y)dy +J-y %; f(x,y)dy=

-£00g) , 1 ffye(0 = f(x,y) dxdy # 0, or

™2 f[rj(x,y) + 0] g(ay +
=1

2 32
J' 3ty = —f0og00, 1€
ax

J.J.yg(x) 0)—)(- f(x,y)dxdy = 0, where f(+,*)

is the joint density of N1 and Sl'

Proof: Referring to the Pitman-Noether Theorem (6],
with (m,8) = (1,%) or (m,8) = (2,%), we note that
assumptions (b)-(b') together with negative scaling
of the threshold if necessary imply conditions A and
B of the Pitman-Noether Theorem, whereas (c)-(c')
imply the first part of condition C. We infer the
second part of condition C from (4) and (5), and
condition D' from Theorem 2. Consider now the proof
of (C). We employ the Pitman-Noether Theorem with
en = k1//;, and obtain an expression for the effi-

cacy n(g) given by n(g) = [%E-Eﬂfg(Yl))‘ lz/og(g)-
0=0

Assumption (e) then implies 2—~E {g(Y )} =
LIS UL T

%— J:[g(x+9y)f(x,y)dxdy| =
o =0

—J:[yg(x) %5 f(x,y)dxdy # 0. Using the

methods of Theorem 1 of [5] we obtain the desired
result, To obtain (1), we note that

3 0 . - % -
Tl Ee{g(Yl))‘e=0 =0, so we let o, k2/n , and ob

32 2 2
tain n(g) = [L-—-E {g(Y,)} ] /G (g). In this
802 f 1 8=0 0

case, assumptions (b') and (e') imply

32 32
— Ee(g(Yl)} = -’;(x+9y)f(x.y)dxdy|
a9 6=0 99 le=0

= -If%(; yg (x) g—x £ (x-0y,y)

2
J:[yzg(x) E—E f(x,y)dxdy # 0 , and we obtain
IxX

(D) in the same way as (C). We derive (A) and (B)
in a similar manner by employing assumption (a) and
noting that f(+,*) factors.

dxdy =
8=0

QED

Note that the methods of [4,5] may be employed
to obtain the solution of the required integral

e e e e gl

B Y



equation, which is of nonstandard form. The bounds 10.
of Proposition 5 and 6 of [5] may he obtained
through the use of the corollary to Theorem 1.
IV. Conclusion
11.

We have considered the design of the optimal
detector for signal detection in corrupting noise,
where both the signal and noise may be chosen from
a large class of ¢-mixing processes and may be de-
pendent on each other. We have seen that this de-
sign reduces to the solution of an integral equa-
tion in which knowledge of only the second-order
statistics of the random processes involved is
required. In particular, if the signal is indep-
endent of the noise and has nonzero mean, the
optimal detector is the same as in the constant
known signal case.
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